of 0.4 ng/L, upper reference limit (99th percentile) approximately 80 ng/L (5).

The demographics of our study population presenting early with type 1 AMI are similar to those of the parent cohort (age 68.8 years, women 23.1%, primary symptom chest pain 84.6%, previous percutaneous coronary intervention 15.4%).

At each of the 3 time points we found a strong linear correlation between cMyC and cTnI, as we previously observed in an ambulatory population (5): Spearman ρ 0.795 (P < 0.01) at presentation, 0.902 (P < 0.01) at 3 h, and 0.888 (P < 0.01) at the late time point. Nonetheless, the ratio of cMyC to cTnI was the highest at presentation, thereafter decreasing significantly with time from presentation, mean ratio at presentation, 7.98 [median, 2.72; interquartile range (IQR), 3.48]; at 3 h, 2.67 (median, 1.83; IQR, 1.40); and at the late time point, 1.71 (median, 0.63; IQR, 1.09)—all P < 0.01 by Friedman 2-way ANOVA by ranks. Furthermore, the ratio was also significantly greater than that we observed previously in a stable cohort without obstructive coronary artery disease and with a cTnT <14 ng/L (mean 1.97) (5).

Although the mean ratio of cMyC:cTnI was highest at presentation, there was substantial individual heterogeneity among the 26 patients with type 1 AMI (Fig. 1). The relative concentration of cMyC to cTnI at presentation soon after symptom onset in those with type 1 AMI was higher than in the same patients at later time points and in ambulatory patients at low risk. The more rapid rise of cMyC vs cTnI that we have observed in patients with type 1 AMI should enable their more rapid/accurate triage. However, the diagnostic performance of cMyC, with and without cTnI, needs further evaluation.

Author Contributions: All authors confirmed they have contributed to the intellectual content of this paper and have met the following 3 requirements: (a) significant contributions to the conception and design, acquisition of data, or analysis and interpretation of data; (b) drafting or revising the article for intellectual content; and (c) final approval of the published article.

Authors’ Disclosures of Potential Conflicts of Interest: Upon manuscript submission, all authors completed the author disclosure form. Disclosures and/or potential conflicts of interest:

Employment or Leadership: None declared.
Consultant or Advisory Role: None declared.
Stock Ownership: None declared.

Honoraria: A. Shah, Abbott Diagnostics.

Research Funding: UK Department of Health through the National Institute for Health, Research Biomedical Research Centre award to Guy’s & St Thomas’ National Health Service Foundation Trust; M. Marber, Medical Research Council (UK) (G1000737), Guy’s and St Thomas’ Charity (R060701, R100404), and British Heart Foundation (TG/15/1/31518).

Expert Testimony: None declared.

Patents: M. Marber, patent number 8,546,089 b2.
Other: Singules was contracted to undertake the analyses of cMyC on a fee-for-service basis and holds no commercial interest.

Acknowledgments: The study was approved by the national research ethics committee, and in accordance with the Declaration of Helsinki.

References


Thomas E. Kaier2
Atul Anand3
Anoop S.V. Shah3
Nicholas L. Mills3
Michael Marber2*

2 King’s College London BHF Centre
The Rayne Institute, St Thomas’ Hospital
London, UK
3 BHF Centre for Cardiovascular Science
University of Edinburgh
Edinburgh, UK

* Address correspondence to this author at:
The Rayne Institute
4th Floor Lambeth Wing,
St Thomas’ Hospital
Westminster Bridge Rd.
London SE1 7EH, UK
Fax +44-(0)20-7188 0970
E-mail mike.marber@kcl.ac.uk

Previously published online at DOI: 10.1373/clinchem.2016.257188

Multiplexing of E-ice-COLD-PCR Assays for Mutation Detection and Identification

To the Editor:

Enhanced-ice-COLD-PCR allows the detection of mutations in a single mutation hotspot down to 0.05% of mutant alleles without prior knowledge of the mutated base, and their identification by subsequent (pyro)sequencing experiments (1). This approach is useful for diagnosis, choice of a personalized treatment, prediction, or the monitoring of treatment response, and has been successfully performed on fresh frozen and formalin-fixed, paraffin-embedded tissue, and circulating cell-free DNA (1, 2).
Optimization & multiplexing of E-ice-COLD-PCR conditions

I. Identification of a common Tc using an E-ice-COLD-PCR with gradient Tc on 0.5% mutation fraction in cell lines

II. Identification of the optimal blocker concentration for each assay using a single E-ice-COLD-PCR program with common Tc (78°C)

III. Multiplexing all assays in one E-ice-COLD-PCR reaction and comparison with simplex E-ice-COLD-PCR

Fig. 1. Multiplexing of BRAF V600, KRAS G12/13, and NRAS Q61 E-ice-COLD-PCR assays.
E-ice-COLD-PCR experiments were performed on 25 ng of DNA with different fractions of mutant alleles of the cancer cell lines G-361 (BRAF c.1799T>A, p.V600E), SW480 (KRAS c.35G>T, p.G12V), and HL-60 (NRAS c.182A>T, p.Q61L) using a gradient LightCycler® 96 and LightCycler 480 II (Roche Life Science). Simplex (E-ice-COLD-) PCRs were run in quadruplicates and multiplex (E-ice-COLD-) PCRs were run in quadruplicates (20%-5%), sextuplicates (1%-0.05%), or octuplicates (WT) using 25 ng of a mix of the 3 cell lines and WT DNA. Dotted boxes indicate the selected parameters for the next steps. EIC-PCR: E-ice-COLD-PCR.
The method is a further development of ice-COLD-PCR (3) and based on the incorporation of locked-nucleic acid nucleotides in the blocker probe complementary to the wild-type (WT) sequence (1). During each PCR cycle, denaturation is followed by hybridization at 70 °C, where WT-blocker and mutant-blocker heteroduplexes are formed, mutant-blocker heteroduplexes are denatured at a critical temperature (Tc) higher than 75 °C, and primers are hybridized at the annealing temperature and elongated at 72 °C, leading to the enrichment of mutations underlying the blocker sequence (1).

Enhanced-ice-COLD-PCR can enrich all types of mutations, allows stronger mutation enrichment, and is less sensitive to variations of the Tc (±5 °C) compared to full-, fast-, or ice-COLD-PCR, for which a slight variation (0.2 °C) can abolish mutation enrichment (1, 3, 4). Therefore, different full-, fast-, or ice-COLD-PCR assays might be less suitable for working under a single thermocycling program and even less suitable to multiplexing. For the specific case of Tm-reducing mutations (where Tm is the temperature at which 50% of double-stranded DNA or DNA/RNA hybrids is denatured) (C:G>A:T or >T:A), which represent 60%–70% of all mutations in cancer, these issues have been addressed by the development of temperature-tolerant (TT)-COLD-PCR, which relies on the use of a Tc incremented by 0.3–0.5 °C for each defined number of cycles, leading to mutation enrichment when the Tc falls in the right temperature window (5, 6).

To evaluate the potential of E-ice-COLD-PCR to multiplexing, 3 previously published assays were selected: B-Raf proto-oncogene, serine/threonine kinase (BRAF)2 V600, KRAS proto-oncogene, GTPase (KRAS) G12/13, and neuroblastoma RAS viral oncogene homolog (NRAS) Q61 (1, 2, 7). A multiplex E-ice-COLD-PCR reaction was performed to amplify these genes in a single reaction followed by mutation detection in 3 different pyrosequencing assays.

The first step was the optimization of the amplification of the 3 hotspots using the same PCR conditions. The annealing temperature of each assay was set to 60 °C, which required the modification of the NRAS Q61 primers (forward: TTGTTGGACATACTGGATACAG; reverse: biotin-ATGACITGTATATTGTGTTGACG). To identify the best Tc common to all assays, a gradient E-ice-COLD-PCR (Tc 75–85 °C) was performed using cell lines bearing either BRAF V600E (G-361), KRAS G12V (SW480), or NRAS Q61L (HL-60) mutation at 0.5% abundance with a fixed quantity of blocker. 78 °C was chosen as the optimal Tc, taking into account the mutation enrichment level, the yield of PCR product, and the absence of primer dimers (Fig. 1).

The determination of the optimal quantity of blocker was performed before multiplexing using serial dilutions of the 3 cell lines ranging from 50% to 0.1% abundance and different concentrations of blocker probes (Fig. 1). Thus, the concentrations selected for multiplex experiments were of 50 nmol/L for BRAF, 20 nmol/L for KRAS, and 30 nmol/L for NRAS.

Multiplex E-ice-COLD-PCR reactions were performed by reducing the quantity of each primer to half (100 nmol/L) on serial dilutions of a mix of the 3 cell lines with WT DNA. The results showed a good performance and high specificity of the multiplex E-ice-COLD-PCR with the 3 assays, which in each case presented a stronger mutation enrichment compared to simplex PCR, probably due to the decrease in primer concentration (Fig. 1). This was confirmed by simplex E-ice-COLD-PCR experiments performed using either 100 or 200 nmol/L of primers, which resulted in a higher mutation enrichment for the reactions with the lower primer concentration (data not shown).

The limit of detection was evaluated at 0.05% for BRAF (P = 0.004) and 0.1% for KRAS and NRAS (P = 0.012 and P = 0.002) using a Wilcoxon rank–sum test. Due to the quantitative resolution of the pyrosequencer (7%–10%) and the low-level background signal present in some WT samples, we recommend a 10% mutation threshold to consider a sample as mutated (1, 2). Multiplexed E-ice-COLD-PCR was also evaluated on lower amounts of DNA and showed reproducible results for DNA of input DNA using, respectively, 20 nmol/L, 6.5 nmol/L, and 10 nmol/L of BRAF V600, KRAS G12/13, and NRAS Q61 blocker probes with a detection limit of 0.5% mutant allele, showing its potential application to cell-free circulating DNA (data not shown).

We have demonstrated that E-ice-COLD-PCR can overcome the problems of multiplexing encountered by most COLD-PCR methods without loss of sensitivity. This is principally due to the high flexibility of its Tc, and this advantage should thus allow its use for massive multiplexing before next-generation sequencing experiments.

Author Contributions: All authors confirmed that they have contributed to the intellectual content of this paper and have met the following 3 requirements: (a) significant contributions to the conception and design, acquisition of data, or analysis and interpretation of data; (b) drafting or revising the
References


Florence Mauger3
Antoine Daunay4
Jean-François Deleuze3,4
Jörg Tost†
Alexandre How-Kit†*

3 Centre National de Génotypage
CEA-Institut de Génomique

4 Laboratory for Genomics
Fondation Jean Dausset–CEPH
Paris, France

† Jörg Tost and Alexandre How-Kit should be considered as senior coauthors

* Address correspondence to this author at:
Laboratory for Genomics
Fondation Jean Dausset–CEPH
27 Rue Juliette Dodu Paris, 75
Paris, F-75010, France
Fax +33-0153725158
E-mail ahowkit@cephb.fr

Previously published online at DOI: 10.1373/clinchem.2016.258830